
Tools to Improve Your Software’s Performance
Two Tools, One Name: PerfTools

Brett Viren

Physics Department

MINOS Week In The Woods, 2005

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 1 / 18



Outline

1 The Profiling Method
Overview
Interpreting The Results

2 Minos PerfTools (MPT)
Overview
Examples

3 Google Perftools (GPT)
Overview
Examples
Other Profilers in Google Perftools

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 2 / 18



The Profiling Method

1 The Profiling Method
Overview
Interpreting The Results

2 Minos PerfTools (MPT)

3 Google Perftools (GPT)

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 3 / 18



The Profiling Method Overview

How they work

Both profilers work the same way:

1 They insinuate code into your program that periodically (many times
a second) takes a snapshot of the currently executing call stack.

2 This data is post processed to produce a weighted, directed graph.

3 GraphViz is then used to produce graphical output.

The Graph:

Each node represents a procedure (function/method) call and shows
the frequency that the procedure was:

I anywhere in the call stack
I at the top of the call stack

Each edge represents one procedure calling another and shows the
frequency of at which this call was seen.

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 4 / 18



The Profiling Method Interpreting The Results

Using the Graphs to Find CPU “Hot Spots”

The graph not only shows what procedure is using CPU but also exactly
how that procedure came to be called. Finding possible areas of
improvement is an iterative process:

1 Find where the code is using CPU most (traditional profiling)
I If the procedures using the most CPU can be improved, the whole

program is made faster
I However, these procedures are often already very well optimized (eg.

lowlevel STL operations are typically implicated)
I Instead, they are using the most CPU, not because they are slow, but

because they are called often, likely by many different procedures.

2 Go up the graph to find what procedures call these popular
procedures most frequently

I See if it is possibe to avoid calling these procedures in the first place.
I If not, can one avoid calling the procedures that called these

procedures?
I Etc.

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 5 / 18



Minos PerfTools (MPT)

1 The Profiling Method

2 Minos PerfTools (MPT)
Overview
Examples

3 Google Perftools (GPT)

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 6 / 18



Minos PerfTools (MPT) Overview

Overview of Minos PerfTools (MPT)

Initially written by Jim Kowalkowski of FNAL. Jim provided all the
fundamental functionality.

I wrote a unified script to automate the post processing and to
provide an interactive display to view and prune the resulting graph.

PerfTools was incorporated into Minos CVS Sept 2003.

External Requirements:
1 The ELFIO library is needed for profile data production.
2 Python is needed for Jim’s post processing scripts and my unified

post-processor/display.
3 GraphViz and Python-Tk is needed for the display.
4 SWIG is needed only to regenerate the GraphViz Python wrappers.

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 7 / 18



Minos PerfTools (MPT) Examples

Example running

shell$ ptrun.py -c ./cpuhog -l log
Running LD_PRELOAD=libProfLogger.so ./cpuhog > log 2>&1
return code: 0

shell$ ptrun.py -n guess -b cpuhog
got -n guess
guessing pid
using 24689
Running ProfParse prof_libs.out.24689 prof.out.24689 \

cpuhog. >> cpuhog.postproc-log 2>&1

shell$ ptrun.py -g -b cpuhog
Setting initial path cutoff to 0
Loading cpuhog.fullnames and cpuhog.paths
Added 57 names
Added 265 paths
Number of snapshots taken is 3276

The 3 steps can be combined into one single command.
Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 9 / 18



Minos PerfTools (MPT) Examples

Example output, Full Call Graph

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 10 / 18



Minos PerfTools (MPT) Examples

Example output, After Focus on Node 29

Focusing on Node #29

1 Mouse-over a node
displays function name

2 Click-drag pans

3 Buttons 4/5 (mouse
wheel) will zoom

4 Enter cuts on number of
up/down stream nodes
and number of calls.

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 11 / 18



Google Perftools (GPT)

1 The Profiling Method

2 Minos PerfTools (MPT)

3 Google Perftools (GPT)
Overview
Examples
Other Profilers in Google Perftools

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 12 / 18



Google Perftools (GPT) Overview

Overview of Google PerfTools (GPT)

Initially released to the public March 2005.

Free Software (BSD licence)

Despite that the name and the CPU profiling mechansim are
essentially identical, GPT share no MPT code.

Small patch may needed to fix problem when running with loon.
Under investigation by Google and myself.

Libraries can be (optionally) permanently linked in to our code w/no
ill effects and “woken up” for use by just setting environment
variables.

External Requirements, only “standard” system packages:
1 Perl for post processing of the data
2 GraphViz executables to generate final results
3 Postscript viewer.
4 (independent from ELFIO)

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 13 / 18



Google Perftools (GPT) Examples

Example Running

The profiling library must be linked into the executable. This can be done
in one of two ways:

1 Explicitly by adding -lprofiler to the link line

2 At run time by setting LD PRELOAD=/usr/lib/libprofiler.so.0

The profile output file is set via CPUPROFILE=prof.out. Then run the
program normally.
shell$ ./cpuhog
...program output...
PROFILE: interrupts/evictions/bytes = 1043/86/52896

Postprocess:
shell$ pprof --ps ./cpuhog prof.out > prof.ps
...output from /usr/bin/nm calls...
Dropping nodes with <= 5 samples; edges with <= 1 abs(samples)

shell$ gv prof.ps

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 14 / 18



Google Perftools (GPT) Examples

Example Output
./cpuhog
Total samples: 1043
Focusing on: 1043
Dropped nodes with <= 5 abs(samples)
Dropped edges with <= 1 samples

0x40128e36
0 (0.0%)

of 1043 (100.0%)

main
0 (0.0%)

of 1041 (99.8%)

1041

run_it
2 (0.2%)

of 1041 (99.8%)

2

_start
0 (0.0%)

of 1043 (100.0%)

1043

1039

std
sort

0 (0.0%)
of 826 (79.2%)

75

runner2
0 (0.0%)

of 481 (46.1%)

481

runner1
0 (0.0%)

of 475 (45.5%)

475

std
vector

push_back
5 (0.5%)

of 33 (3.2%)

3
cpu_hog

0 (0.0%)
of 939 (90.0%)

CpuHog
sort_data

0 (0.0%)
of 751 (72.0%)

751

CpuHog
fill_data

16 (1.5%)
of 77 (7.4%)

61

CpuHog
select_data

0 (0.0%)
of 73 (7.0%)

73

get_rand
45 (4.3%)

of 71 (6.8%)

43 2

std
_Construct

16 (1.5%)

5

std
__introsort_loop

4 (0.4%)
of 715 (68.6%)

715

std
__unguarded_partition

229 (22.0%)
of 305 (29.2%)

36

__gnu_cxx
__normal_iterator

operator*
const

226 (21.7%)

6

std
iter_swap
103 (9.9%)

2

__gnu_cxx
__normal_iterator

operator--
83 (8.0%)

3

__gnu_cxx
operator<

59 (5.7%)

5

__gnu_cxx
__normal_iterator

operator++
44 (4.2%)

3
std

__final_insertion_sort
0 (0.0%)

of 41 (3.9%)

41

std
__unguarded_insertion_sort

13 (1.2%)
of 22 (2.1%)

13

751

3481

269

129

101

66

54

__gnu_cxx
__normal_iterator

base
const

51 (4.9%)

38 40

__gnu_cxx
operator-

7 (0.7%)

7

472

8

467

8

76

25 209

22

std
copy

0 (0.0%)
of 43 (4.1%)

21

std
partition

0 (0.0%)
of 20 (1.9%)

20

std
__partition

19 (1.8%)

19

select_func
operator

6 (0.6%)

3

__gnu_cxx
operator==

6 (0.6%)

3

0x4013f824
0 (0.0%)

of 15 (1.4%)

15

std
__copy_ni1

0 (0.0%)
of 43 (4.1%)

std
__copy_ni2

0 (0.0%)
of 43 (4.1%)

47

std
__copy_aux2

0 (0.0%)
of 31 (3.0%)

35

std
__copy

10 (1.0%)
of 18 (1.7%)

10

std
back_insert_iterator

operator=
2 (0.2%)

of 8 (0.8%)

2

47

74

4 9

std
__unguarded_linear_insert

12 (1.2%)

11

__gnu_cxx
operator!=

7 (0.7%)

6

std
vector

_M_insert_aux
0 (0.0%)

of 28 (2.7%)

28

0x4018a4d5
26 (2.5%)

268

std
uninitialized_copy

0 (0.0%)
of 24 (2.3%)

24

std
__uninitialized_copy_aux

0 (0.0%)
of 24 (2.3%)

24

24

45

23

9

3 3

6

5

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 15 / 18



Google Perftools (GPT) Examples

Example Output

./cpuhog
Total samples: 1043
Focusing on: 1043
Dropped nodes with <= 5 abs(samples)
Dropped edges with <= 1 samples

0x40128e36
0 (0.0%)

of 1043 (100.0%)

main
0 (0.0%)

of 1041 (99.8%)

1041

run_it
2 (0.2%)

of 1041 (99.8%)

2

_start
0 (0.0%)

of 1043 (100.0%)

1043

1039

std
sort

0 (0.0%)
of 826 (79.2%)

75

runner2
0 (0.0%)

of 481 (46.1%)

481

runner1
0 (0.0%)

of 475 (45.5%)

475

std
vector

push_back
5 (0.5%)

of 33 (3.2%)

3
cpu_hog

0 (0.0%)
of 939 (90.0%)

CpuHog
sort_data

0 (0.0%)
of 751 (72.0%)

751

CpuHog
fill_data

16 (1.5%)
of 77 (7.4%)

61

CpuHog
select_data

0 (0.0%)
of 73 (7.0%)

73

get_rand
45 (4.3%)

of 71 (6.8%)

43 2

std
_Construct

16 (1.5%)

5

std
__introsort_loop

4 (0.4%)
of 715 (68.6%)

715

std
__unguarded_partition

229 (22.0%)
of 305 (29.2%)

36

__gnu_cxx
__normal_iterator

operator*
const

226 (21.7%)

6

std
iter_swap
103 (9.9%)

2

__gnu_cxx
__normal_iterator

operator--
83 (8.0%)

3

__gnu_cxx
operator<

59 (5.7%)

5

__gnu_cxx
__normal_iterator

operator++
44 (4.2%)

3
std

__final_insertion_sort
0 (0.0%)

of 41 (3.9%)

41

std
__unguarded_insertion_sort

13 (1.2%)
of 22 (2.1%)

13

751

3481

269

129

101

66

54

__gnu_cxx
__normal_iterator

base
const

51 (4.9%)

38 40

__gnu_cxx
operator-

7 (0.7%)

7

472

8

467

8

76

25 209

22

std
copy

0 (0.0%)
of 43 (4.1%)

21

std
partition

0 (0.0%)
of 20 (1.9%)

20

std
__partition

19 (1.8%)

19

select_func
operator

6 (0.6%)

3

__gnu_cxx
operator==

6 (0.6%)

3

0x4013f824
0 (0.0%)

of 15 (1.4%)

15

std
__copy_ni1

0 (0.0%)
of 43 (4.1%)

std
__copy_ni2

0 (0.0%)
of 43 (4.1%)

47

std
__copy_aux2

0 (0.0%)
of 31 (3.0%)

35

std
__copy

10 (1.0%)
of 18 (1.7%)

10

std
back_insert_iterator

operator=
2 (0.2%)

of 8 (0.8%)

2

47

74

4 9

std
__unguarded_linear_insert

12 (1.2%)

11

__gnu_cxx
operator!=

7 (0.7%)

6

std
vector

_M_insert_aux
0 (0.0%)

of 28 (2.7%)

28

0x4018a4d5
26 (2.5%)

268

std
uninitialized_copy

0 (0.0%)
of 24 (2.3%)

24

std
__uninitialized_copy_aux

0 (0.0%)
of 24 (2.3%)

24

24

45

23

9

3 3

6

5

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 15 / 18



Google Perftools (GPT) Examples

Example Output

./cpuhog
Total samples: 1043
Focusing on: 1043
Dropped nodes with <= 5 abs(samples)
Dropped edges with <= 1 samples

0x40128e36
0 (0.0%)

of 1043 (100.0%)

main
0 (0.0%)

of 1041 (99.8%)

1041

run_it
2 (0.2%)

of 1041 (99.8%)

2

_start
0 (0.0%)

of 1043 (100.0%)

1043

1039

std
sort

0 (0.0%)
of 826 (79.2%)

75

runner2
0 (0.0%)

of 481 (46.1%)

481

runner1
0 (0.0%)

of 475 (45.5%)

475

std
vector

push_back
5 (0.5%)

of 33 (3.2%)

3
cpu_hog

0 (0.0%)
of 939 (90.0%)

CpuHog
sort_data

0 (0.0%)
of 751 (72.0%)

751

CpuHog
fill_data

16 (1.5%)
of 77 (7.4%)

61

CpuHog
select_data

0 (0.0%)
of 73 (7.0%)

73

get_rand
45 (4.3%)

of 71 (6.8%)

43 2

std
_Construct

16 (1.5%)

5

std
__introsort_loop

4 (0.4%)
of 715 (68.6%)

715

std
__unguarded_partition

229 (22.0%)
of 305 (29.2%)

36

__gnu_cxx
__normal_iterator

operator*
const

226 (21.7%)

6

std
iter_swap
103 (9.9%)

2

__gnu_cxx
__normal_iterator

operator--
83 (8.0%)

3

__gnu_cxx
operator<

59 (5.7%)

5

__gnu_cxx
__normal_iterator

operator++
44 (4.2%)

3
std

__final_insertion_sort
0 (0.0%)

of 41 (3.9%)

41

std
__unguarded_insertion_sort

13 (1.2%)
of 22 (2.1%)

13

751

3481

269

129

101

66

54

__gnu_cxx
__normal_iterator

base
const

51 (4.9%)

38 40

__gnu_cxx
operator-

7 (0.7%)

7

472

8

467

8

76

25 209

22

std
copy

0 (0.0%)
of 43 (4.1%)

21

std
partition

0 (0.0%)
of 20 (1.9%)

20

std
__partition

19 (1.8%)

19

select_func
operator

6 (0.6%)

3

__gnu_cxx
operator==

6 (0.6%)

3

0x4013f824
0 (0.0%)

of 15 (1.4%)

15

std
__copy_ni1

0 (0.0%)
of 43 (4.1%)

std
__copy_ni2

0 (0.0%)
of 43 (4.1%)

47

std
__copy_aux2

0 (0.0%)
of 31 (3.0%)

35

std
__copy

10 (1.0%)
of 18 (1.7%)

10

std
back_insert_iterator

operator=
2 (0.2%)

of 8 (0.8%)

2

47

74

4 9

std
__unguarded_linear_insert

12 (1.2%)

11

__gnu_cxx
operator!=

7 (0.7%)

6

std
vector

_M_insert_aux
0 (0.0%)

of 28 (2.7%)

28

0x4018a4d5
26 (2.5%)

268

std
uninitialized_copy

0 (0.0%)
of 24 (2.3%)

24

std
__uninitialized_copy_aux

0 (0.0%)
of 24 (2.3%)

24

24

45

23

9

3 3

6

5

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 15 / 18



Google Perftools (GPT) Other Profilers in Google Perftools

Heap Memory

Leak Checker:

1 Use the tcmalloc library as you would the profiler lib.

2 Set HEAPCHECK=normal, strict or draconian.

Memory Profiler (who uses how much memory)

1 Use the tcmalloc library as you would the profiler lib.

2 Set HEAPPROFILE=heap

Both can be alternatively turned on/off via function calls in your code.

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 16 / 18



Summary

Summary

We have two similar profilers available.

Each have benefits and deficits w.r.t. the other.

When this method of profiling has been applied to MinosSoft code
factors of 2-3x speed ups have been found.

We (core and physics programmers alike) should profile our code
regularly after new, significant development has been done.

Personally I much prefer Google’s PT. After some of the bugs in GPT are
worked out, I will consider our PT no longer supported.

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 17 / 18



Appendix For Further Information

For Further Information I

Google Perftools page
http://goog-perftools.sourceforge.net/

Minos PerfTools page
http://minos.phy.bnl.gov/software/prof/PerfTools/doc/

GraphViz (recently became Free Software!)
http://www.graphviz.org/

Simplified Wrapper and Interface Generator (SWIG)
http://www.swig.org/

Brett Viren (Brookhaven National Lab) PerfTools Ely 2005 18 / 18

http://goog-perftools.sourceforge.net/
http://minos.phy.bnl.gov/software/prof/PerfTools/doc/
http://www.graphviz.org/
http://www.swig.org/

	The Profiling Method
	Overview
	Interpreting The Results

	Minos PerfTools (MPT)
	Overview
	Examples

	Google Perftools (GPT)
	Overview
	Examples
	Other Profilers in Google Perftools

	Summary
	Appendix
	For Further Information


